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A Parallel Divide and Conquer
Algorithm for the Generalized Real
Symmetric Definite Tridiagonal
Eigenproblem

Carlos F. Borges*and William B. Gragg'

Abstract.

We develop a parallel divide and conquer algorithm, by eztension, for the generalized
real symmetric definite tridiagonal eigenproblem. The algorithm employs techniques
first proposed by Gu and Eisenstat to prevent loss of orthogonality in the computed
eigenvectors for the modification algorithm. We examine numerical stability and adapt
the insightful error analysis of Gu and Eisenstat to the arrow case. The algorithm
incorporates an elegant zero finder with global monotone cubic convergence that has
performed well in numerical experiments. A complete set of tested matlab routines
implementing the algorithm is available on request from the authors.

1 Introduction

We consider the problem of finding a matrix U € £"*™ such that

UT(T-5\NU=A-12,
is diagonal, or equivalently

UTSU =1 and UTTU =A, (1)

where

*Authors address: Code Ma/Bc, Naval Postgraduate School, Monterey, CA 83943, Email:
borges@waylon.math.nps.navyanil

tAuthors address: Code Ma/Gr, Naval Postgraduate School, Monterey, CA 83943. Email:
gragg@gunness.math.nps.navy.nul
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and S is assumed to be positive definite. This generalized eigenvalue problem has
two special cases that are of interest in themselves. They are:

1. § = I, the ordinary tridiagonal eigenproblem.

2. S =TI and a; =, the bidiagonal singular value problem (BsvP), by perfect
shuffle of the Jordan matrix
0 BT
B 0

with B upper bidiagonal {16].

There are two phases to the divide and conquer algorithm, the divide (or split)
phase, and the conquer (or consolidate) phase. We shall address these in order.

2 The algorithm

2.1 The divide phase

Denote by e; the ith axis vector where the dimension will be clear from the context.
Let 5,1 < s € n, be an integer, the split indez, and consider the following block
forms:

17 S

[ T e,-18s-1
T = | Be-1el, a, B.eT |,
e, T
[ S €-1Ys-1
S = | el 6, nel

Note that s = n is possible; then T3, S;, and e, are empty [9, 10]). Suppose we
solve the subproblems

UTTi-SiMUis -1 (k=1,2). ¥))
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The form of the subproblems is preserved. In particular, the matrices S; are
positive definite and, if T has a zero diagonal, so do the matrices T;. Let

~ U‘
U= 1 .
Uz
UT(T-SA)U =

U;r(Tl - S AU, U?‘el—l(ﬂt"-l = %-12)
(ﬁa-—l - 7.-14\)6?_,0’1 a, = §,A (ﬁo - 7'4\)3‘{.(12
UTei(B — 1) UT (T = S22V,

Then

2.2 The conquer phase

The conquer phase consists of solving the subproblems (2) from the divide phase,
consolidating the solutions, and finally, solving the consolidated problem. Let

T
u =U) e, up = U ey,

where the U, are solutions to (2). Then

. . AM-1 “l(ﬁa-l —Tc—l/\)
UT(T=SNU=| (Bic1 = tacr ] a, ~ 6,2 (B = v M)ud
“'.'(ﬂ: '—TIA) Ay —-1)
The right side is the sum of a diagonal and a Swiss cross:
z z
X R z z
UT(T-SNU = z +| 2z z z z =
z z
x z

This can be permuted to an arrow matrix by a permutation similarity transfor-
mation with P, = [ey,ez,...,e,-1,€,441,...,€,,€,]. Thus

A\ = PTOT(T-s)nUP,

A B, 1 U Y-1
= Ay wf, |- I uzy, |A
Ts

Bi-u] Bu]  a, -ul yul g,

D Bu | _ I Cu A
w'B a ow'C 5 !

with

D
DTI0 5o s
T e )
v T TUTECTED 3
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uy
u= ,
uz

_ | Bial | 1l
p=[fl i) o= [ ]

. I Cu
Since S and o

from the former. Its Cholesky decomposition is

1 Cu - 1 I Cu _ T
LF” 7]'["”701[ P]'RR‘

with p? =4 — u” C%u > 0 the Schur complement in S of
Si
S |

e[ 5]

and a second congruence transformation with R~! gives

are congruent the latter inherits positive definiteness

Now

A(A) = RTAQR™!

- D Bu -
= R7T‘JB N }R‘—IA

D
[ T w]-IA = A=Al

w w

with

(B—~ DC)u
p y
a, ~u? (2B - DC)Cu
P '
We have reduced the conquer step to the problem of solving an ordinary eigen-
problem for 8 symmetric arrow matrix. If V is an orthogonal matrix with

w =

AV = VA
and A diagonal, then (1) holds with

UP,R~V

U, ~Uyuy7,-1/p
= l/p V.
Uy  =Uav,/p

U

i
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It is useful that v; = Ugui can be computed in O(n) time by solving S;v; =
e,_; and Szve = e; using the Cholesky factorization S} = Ly LT and the reverse
Cholesky factorization S; = LI Ls. In the case that only the eigenvalues are
wanted it is only necessary to compute the first and last rows of the U-matrices
which constitutes a further savings.

In summary, the conquer phase proceeds by consolidating the subproblems and
building a full eigenproblem for an arrow matrix.

3 Solving the eigenproblem for the arrow

In this section we consider the solution of the eigenproblem for a real symmetric
arrow matrix

D b
A“[bT 7]

where A € #°%" is symmetric, D = diag(a), a = [a1,...,an-1]T, 0y 2 a2 > ... >
an-1,and b = [8),...,0,-1]7 > 0. When A arises from the BSVD then a is odd
and b is even, that is a+ Ja = 0 and b = Jb, with J the counter-identity, the
identity matrix with its columns reversed, and v = 0.

If any B; = 0 then it is possible to set A; = a; and deflate the matrix since
e; is clearly an eigenvector {28]. We shall call this S-deflation and note that if
B; < tolsj|b]} where tols is a small tolerance then a numerical deflation occurs.
We derive a precise value for {ols in section 4.4,

A second type of deflation occurs if applying a 2 x 2 rotation similarity trans-
formation in the (7, 7+ 1)-plane that takes 4, to zero introduces a sufficiently small
element in the (j, j+1) position of the matrix. This will be called a combo-deflation
(see [15]). At each consolidation step we perform a sweep to check for B-deflations
followed by a sweep to check for combo-deflations. The combo-deflation can be
arranged so that the ordering of the «; is preserved whenever one occurs. After

deflation the new 8;,, := (/87 + B},, 2 B;4+1 and hence no further S-deflation

can occur. The combo-deflations can be disposed of with a single pass by backing
up a single element whenever one occurs. Note that deflation is backward stable
since it results in small backward errors in A. Deflation for the BsvD is more
delicate involving a simultaneous sweep from both ends of the matrix. Care must
be exercised at the center of the matrix.

After deflation the resulting matrix can be taken to have all §; > 0 and the
elements of the arrow shaft distinct and ordered, that is ay > a3 > ... > ap_;.
An arrow matrix of this form will be called ordered and reduced. Henceforth, we
shall assume A is of this form.

The block Gauss factorization of A — Al is
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I 0 D - Al b
A"”‘[bT(D«,\I)-l 1][ o -f(A)]
where f, the spectral function of A, is given by

n-1 ﬂ2
fA)=2r- 1+Z ’

This is a rational Pick function with a pole at infinity [1). The most general form
of a rational Pick function is

fA) = 6r— 7+Z §>0. (3)

In relation to the various divide and conquer schemes, the case § > 0 corresponds
with eztension, § = 0 with modification, and 8 = v = 0 with restriction [7}.

Inspection of the graph of the spectral function reveals that the elements of
the shaft interlace the eigenvalues

M>a>A>..>ap-1 > An. (4)

Moreover, in the present case, the derivative of the spectral function is bounded
below by one so that its zeros are, in a certain sense, well determined.

3.1 The zero finder

The fundamental problem in finding the eigenvalues of an arrow is that of providing
a stable and efficient method for finding the zeros of the spectral function. We
now examine this problem in some detail.

The zero finding algorithm we present is globally convergent in the sense that
the iteration will converge to the unique zero of f in (o, ax_1) from any starting
value in the closed interval [c), ag..;], where we put ag = 400 and a, = —00.
The zero finder converges monotonically at a cubic rate and applies to a general
Pick function as given in formula (3).

3.2 Interior intervals

The iterative procedure for finding the unique zero of f in one of the interior
intervals (g, ax_;) proceeds as follows. Let zg, ax < zp < a3, be an initial
approximation to A;. If ; is known choose

wo W

(r)=@a
d’J(l) + [« TS Rl + Qg — T

so that
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6 (2;) = fOz), i=0,1,2. (5)

Thus o, wg, and w; must satisfy

1 (ak_l-zj)‘: (ak—-zl)’ c f(=z;)
0 (ap-1-2;)"% (ap—z;)°° wo | = | f'z5)
0 (ap—1—=;)"% (ar-z;)7° wi (=)
and we find
B a;-ap_1ai—ag
o = 3z;-(y+ar-1+ar)+ Z “._:x_ a‘—z»la--—r’
igk—-1k T3 v TE o)
— a2 (ak-1 = z;) a; —ap
wo = Bpa+ (14 3 o :
k=1 — O Wren “ T~ zj
Bl ai—aky

)3
wi ﬂkL—“—*)—.HZ

1

. ((l,‘ - ij):' Qi — Iy

Since wg > 0 and w; > 0 it follows that ¢; is a Pick function. Thus ¢; has a
unique 2e1o z4 € {ag, a1} Also

wo> B >0 . w1 >pE>0.
The error function
32 l’.,_ - W 2——;.;
@) -d@)=z—-(r+0)+ ot R Y A
O

P iz Q.1 —T ap — T
has n zeros, counting multiplicities. There are n—23 zeros exterior to (ag, ag—1) and
three more at z;. Thus the error function crosses zero exactly once in the interval
(o, ax—y). Hence xj4 lies between z; and Ag, and the iteration is monotonically
convergent froin any starting guess 2o € [ag, ag—)] as claimed. The cubic rate of
convergence follows from (5).

Successive iterates can be found by solving quadratic equations, Rather than
solve ¢;(z) = 0 for zj4; it is better to solve

¢j(x; —8)=0
for the increment A = z; — ;4. Some rearrangement using (5) reduces this to
aA?+ A - f=0, (6)

with
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o
T T2 - @)
N Y s .
R O ey erd L ®)

When shifts of the origin to the nearest pole [15] are used then one of a1 or au
is zero. The computation of g = B(z;) should account for the fact that it has only
stmple poles at ap.; and ag.

If we start at the midpoint of the interval, zo = (ag-1 + o) /2, then we always
have 8 = B(z;) > f'(z;) 2 1. This can be seen by noting that B(z¢) = f'(z)
and that when zy > Mg then for all of the succeeding iterates f(z;) > 0, by
monotonicity, and —t— + ak_’_% is negative. If 2g < Ar a similar argument
applies. It follows that the increment can always be computed stably as

1+ 43

pt

3.3 Exterior inte-vals

The treatment of the two exterior intervals is geometrically the same as above,
Again, the approximating function has poles at the endpoints and the residues at
these poles, and the constant teri, are chosen to satisly (5). We present the case
for the interval {1, 00), the case for the other exterior interval being similar. Now

Wi
¢i(z) =wpx — 0o +
a)p —
with

pan, ay ~ 0

1~y
wg = 1 > 1
o +Z(J -(r)'rj-(r,- - ’

=% ‘1
nol ks r 3
- 2
v, = B+ 32 (L > .
! ! Z’ T - o 2 A
The inequalities are strict unless n = 2. Again we find (6) where now

n-1 l a)-a,
l+z:—" (r;—a, 3 Ty-a,

a = 1
Ty = g
25)
o= e+ L8l
Tj—

These are limiting cases of (7) and (8) ( introduce another pole ag > a; and let
ap = 400). H xg > Ay then f{A) > 0so 8> f/ > | and A is again computed
stably using (9). We obtain global monotone cubic convergence as before.
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Contrary to the algorithms of {11, 12, 15] our algorithm is well-defined when
starting at the endpoints of the intervals. The algorithm of [23] can start at the
endpoints but has only quadratic couvergence.

To guarantee that zo > A} we take zg to be the iterate in {ay, +00) from +co.
As 1y — +oo the approximate Pick function tends to

dz)=12~ ”b“ (10)

(q-—J‘

Qur actual starting guess is the zero of (10) in (¢, +00):

01+1:,_,£‘-+ (3—"-‘- +HM] , Y > ag,

ro = z
ay + LT . v Y L.
s ;*+\/(—1*‘: ) +ibyz

When shifts are used we have a; = 0.

3.4 Orthogonality of the eigenvectors

It is essential that the computed eigenvectors of the arrow matrix be numerically
orthogonal. As a point of entry into the further analysis of the algorithm we now
examine the orthogonality of the eigenvectors following [15)].

Consider the divided difference

FN) = 040 ~ B
fup) = _T:;-l—- Z (aj = A) (nJ —4t) (1)

= 1+bT(D-AN"YD = ul)" ',
Note that g = A gives f/(A} = 14 [|[(D = AI)"'b||2. If f(A) = 0 then

2= | _Tour-p)'b
”(“‘[Al'J”[ i }

. . . b . . .
is an eigenvector of the arrow 1 atrix 4 = [ K associated with the eigen-

value A, and

v(A)
J'(A)
is the normalized eigenvector whose last clelent is positive. The ordering of A

implies that its matrix of eigenvectors can be taken positive below and on the
diagonal, and negative above.

u(A) =
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Let f(Ao) = f(10) = 0 with Ay # po. Thus Ay and pg are distinct eigenvalues
of 4. The eigenvectors u{Ag) and u{jip) are orthonormal:

u(Ao) u(y0) = f(Ao. pio) = 0.

Let A and p be approximate eigenvalues in the sense that

A - Ay 6
TR AL 5. & —
! (!j‘-/\u ’)l_ 144
(12)
N e 0 " 6
- = & —
T ay - "‘Sl-f-é

Here 6 > 0 is hopefully, but not pecessarily, close to the machine unit ¢. Note that
(12) is equivalent with

(‘J~A=‘+"t' -\i‘—j——l:1+6’
“)—/\“ J fl) ¥ 247} 4

These conditions imply that the approxinmate cigenvectors u(A) and u(y} are
nearly orthogonal. For we have

VIOV (a0 u(p)

il

SO ) =~ f(Au»l‘u)

_ "5':' EH (z _ (oj = M)a; — p) )
o 0 = Mlay =) (a; = Aa)(a; = po)
-1 ,3'_7

= e 6+ 8 +668).

}(uJ—,\)(uj—u)(" ’ J’)

i=
Since
28 6
& 8 4 3] L e e
10 + &) + ”!'1+a+(l+o)—"‘
then

VIOV G0N u(p) = 2667(D = A1) 'O(D - ul)~'b
with [©] < I. Thus

VIOV GO uip)l = 28D = A1) bl D — ul)~ bl

and so

fu(A) T u(p)} < 26.

Condition (12) is stringent. If we let 4 — 0 then it is easy to show that A
can have an eigenvalue Ay = Ag(,#;) = ag + O(3%): (12) then requires that the
approximate eigenvalue A satisfics a bound
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A = Aol € O(83}),

which is difficult if 3. /lb]] is only somewhat larger than nachine precision, say
€34, Two techniques are used to atten:pt to satisly (12) - shifts of the origin {15},
and simulated extended precision (SEP) arithinetic {26, 14]. Condition (12) means
that

1) - /\QI < 6!)’1“]{)&0 — e gy ™ /\0}

When shifts are used it means that X is nearly fi(Ag).

4 Numerical stability of the algorithm

We now give a partial analysis of the stability of this approach to the eigenproblem
for the symmetric arrow matrix. Observe that

o -4
g{A) n;;:(/\ - u.,').
The following inverse eigenvaluc problom [6] is important: given {a;} and {A;}

satisfying (4), find {8;} and 7 so that M(A) = {A;}. This problem is simply solved
by computing the residues of the partial fraction decomposition of f. In particular

ey

- PN

} e N} ——
z\«)..i}.xk(“‘l )q(/\)
ﬂ::l(“k - ’\j)

n;gk(”’-’ - Ilj).

(TR

A=Y
J=1

y=1

¥i
dz

fl

¥

For fixed {a;}, the elemients of the arrow head, {5} and 4, are ezplicitly known
functions of the eigenvalues.
Now let {A;} be a set of apprerumalc cigenvalues of A satisfying (4). Then

ﬂ:=!(ln‘- - 4;)

# o= -w2=L 700 (35 0) 1

B Hj;tk(“"—“i) (6 > 0) (13)
n n—1i

ISP YED Y (14)
j=1 i=l

define 2 modified matrix A with A\(4) = {)\,- }. To obtain a backward error analysis
for the complete eigenvalue problem we bound the differences 8¢ — B and ¥ — 7.




12 Carlos F. Borges and William B. Gragg

4.1 Error analysis for the Dongarra-Sorensen condition

We give an error analysis using the Dongarra-Sorensen condition

P )
It =560 16,41 <8, (15)

(A3 ,\J

—

where § = O(c) is of the order of the machine unit, simplifying that in [6].
Rearrangement of (15) gives

A —ap = (A = ae)(d + 81,
It follows that

" 1 13
= Jo+ha =8 {1+3 8,1,
1=1

=1

and
l n "
A REE DI
i=l

with the 6], and 8/, at most only slightly larger than the é;,¢. Thus

e PR
»1[,' - 2

1

where 8 = O(¢) 15 only slightly larger than o,
Now (14) becotes
1=+ ) (A= ) k)
1=1

with ag(;) one of the poles of f. Thus

n
1=l <61 — kgl
1=l

To minimize this bound we chouse nyjy to be a pole of f closest to A;. Clearly,

ai(yy = oy and agg,) = ay,oy, S0

0|

=] <a{(A —o)+ Zf’\) = gl + (an-1 = An)

=2
For 1 < j < n a closest pole to Aj is cithier a; or aj_y. The distance

IA}' - ﬂ“j,, = win {’\j -0, iy = A]}




(3
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is maximized when A; is the midpoint of the interval (a;,a;1), and the value of
the maximum is (a; + aj-))/2. Thus

n-1i

. 1
[y=v1 < & ('\l““1)‘*’:2';(“;»1-'“;H’(ﬂu-x—f\n)

=iy - )
- 6((A,—A,,)-—1’——T'——-l)

< (A = An) L 2fjA.

In summary, the Dongarra-Sorensen condition innplies simall relative errors in
each 8 and a small absolute error in 5. For the #svh this huplies sall element-
wise relative errors since the condition 5 = 5 = 0 is enforced by Aj + dnyq-j =0
(only half of the eigenvalues are actually computed, the rest follow from this con-
dition).

4.2 Rounding error analysis of the computation of f(A)

The choice of a termination criterion depeuds on a carefu) rounding error anal-
ysis of the particular manner in which we compute f{A). Let {a;}, {5}, and v
be floating point numbers. We represent X as the ordered pair of floating point
numbers (o, ) where the shifl ¢ ix a pole closest to A, and A := o 4+ u. For the
exterior intervals we have ¢ = oy or ¢ = «,,_;. For the interior intervals o can be
determined by evaluating f at the midpoint and checking the sign. We compute

f() as
=1 37

3
foli) =3 ==+ (=),
J

-~ ft

=1

with the standard operation precedence rules, where

ai=aqj—0 aml 3 =q-a

We use Wilkinson's notation: fi{a + y) = (« » y){1 + 8) with 18] < ¢/{1 +¢)
and ¢ = 27* the machine unit. More gencrally, ¢ denotes numbers not essentially
larger than 2~* [27] and the rounding errors & satisfy 8] < «.

We define

fllaj = X) = Jl{a) = 1) = [l({c; = a) = p).

If ¢ = a; then

fl((\k e /\) == Oy~ ,\.

with no rounding error. For j # &,
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Ao =0 = 0, =) (14 L5 645),

(i,-—(n

and since ag is a pole clusest Lo A then ‘ ‘ < 2. Thus all terms a; ~ A are

(l

computed with sinall relative ervors:

Fllaj = A) = (0, ~ A1+ 38)), |4} <e (16)

When computing f(A) = folyr) we add the teris A=y = (A= 0) — (v — o) last.
A routine error analysis using (16)

re-!

A1 I<UM)1+Z$ _M

to eliniinate the terin JA ~ 4 from the vrror hound gives

n~1 132
IS = SO < ¢ (:s;/'«,\n +le= A+ (n+5)Y %

j=1 la; = Al
which implies

n-1

ﬂ2
FISON) S (L4 3O (M) + ¢ (!n —Al+ (4 s)g el R

4.3 Termination

Our goal is to chouse a termmtation criterion so that we stop when A is as close
to the true eigenvalne Ap as possibdo s Lot e = A i (11) with f{A:) = 0. Now
ap < Ap < oy Also et o < A < gy Then the terms o — A and aj — A
have the satne sign and

A= A < LG I (18)
L+ 72 moem

To obtain an upper bound for [A — A we need an upper bound for [f(A)| and a
jower bound for the denominator. For the latter we have

T Zisi m (19)

1 > 1
+ Z ja; - 1\”n - Al + max; foj — Al

Let us determine how small [f(N)] is when A is the roundcd representation of
Ap. Thisis
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o= o4 flyn) = o+l +6)
= A+ 0 = A+ (M = 0)d
and we have
o = Al = o, ~ Al
J
Thus
. Hoe] j:"
) = l)‘ A |+ L
! ‘i Z(tu-—\)(n}-—/\l)

- f’
= lo-r)sl |1 2
(e = Ax) l( + ~.("J“'\)i“:‘}‘k))

=1
< ((0—/\1[+Z ’\)
iy, —

s=1t

From (17),
n-1% 3&\ )

[FIFAN < e (]a«-A”-{»[A—-n[-f—(n-{-b)Z ~-/\f

(A - o)/{1 + 8) then

e
Z{A—ﬂl-r(n-f-h)z -—AI)

Since Ak -0 =

LFILF OO < (

We terminate and set Ap = A when

L7 ""
USON S 21 20h = aj+ (1 + 6) -~ .
fo; = A

Inequality (17) also holds if f{A) and JISEAYY are iterchanged. Thus

. ] R 2
PS5l —al+ @+ 1D S —2 | (20)
J=1 dog = A

From (18) and (19)
Nl a?

Bl = AL+ (30 + 17 )Z, xm

l)\k = M| S cmax A - )
’ i, P =0, + 3 ;‘ ; l< )
vy~
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Since |0~ i) < Jo~Ael+ A - Ae] and |o = Ag] < nax; |a; — A | the computed
eigenvalues satisfy

e = Akl S Gt IT)cmaxfog = Al
Gl 4+ Gl )

A

4.4 Error analysis for the Gu-Eisenstat condition
Fromy -9 = ;'zl(/\, ~ Ay ) o (21) we dinnd

v =] < Gul(n+ Gl Al

We have noted that the Dongrri-Sorcuson condition {18) is stringent. It is
natural to ask for small absoluts cvrors i the g I we replace 8; 4 by 8¢/ in
the analysis in section 4.1 we find tha

In—l 5/;’\ n=1
Be=id (1+=) =1 =4 oy,
e = ik ; % =4+ ZZ &

and

. " 124 3 -
[ = S 2 et T et + O(),

are implied by the Gu-Eiscastal condition

T ’\J
—hpt—E = b 6, 6] <6
We must bound 8.
From (20)
n—1} n-} ﬁ2
P = Al | 1+ < Ad—ol+ Y ——teem
Z(“J"'l\‘)l'\ —)\;) Z'O)—/\gl
with m = 3(n + 6). Using
A=l <= Al = ol
and the Gu-Eisenstat inequality.
L. | e A = Al
foj = Al = [0 = M), = Ap) (0 = A)aj = Ag)’

we gel
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u=-1i f’:’
: JFLE [, = Ay Wy = A )M
Ae = Al S e ) A = o) + {2 St ] ,

Zu—l ;
i=t {a,=A o, =AL)
where ¢ has been increased to ¢« /(1 — 1)

By Cauchy’s inequality.

Ll
T 3¢ l/'.'
[ AP SN
(Z,:: (u,,-mcu,—x.n)

hi! . 1/2
< me (I'\I: - o)+ -‘-}-;i [(nj = Ay — Ak)] ) .
e

p'k—'\kl < me i —ol+

for every j. The arithmetic-geoinetric nucac meqgualtity snd the triangle inequality
yield

A {
Al = Al < e (lf\k-f"l"f' Kh‘j—)‘”*‘"l/\‘—hl))

Thus

t 1
(uﬂi”‘”)u‘-m < e (l\,—o‘]-r—{u -,\‘|“’“)

2 ﬁ;
— T ..t 'y A/.'l ( I/\l' - 0| ﬁ,—"
= nndibi] T H+ {Ap = (‘j’ ”bu

"
|'lj - r\"l

IN

Zincfjbl)
If me||b|| < 85 for all j, then

[65 ] < -Luclibi].

and consequently

Pl = | < G + 63ibji

Thus toly is me. If B < 3(n + G}||bl} we replace i by zero and accept ay as
an eigenvalue with norinalized cigenvector ¢

The computed eigenvectors of A are taken to be thase of the nearby matrix A.
Because of (13) and (16) they are congnuted to ligh relative precision elementwise
and hence are numerically orthogonal [20}.
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